Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Cytokine ; 178: 156568, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38471420

RESUMEN

BACKGROUND: Laryngopharyngeal reflux (LPR) is one of the most common disorders in otorhinolaryngology, affecting up to 10% of outpatients visiting otolaryngology departments. In addition, 50% of hoarseness cases are related to LPR. Pepsin reflux-induced aseptic inflammation is a major trigger of LPR; however, the underlying mechanisms are unclear. The nucleotide-binding domain and leucine-rich repeat protein 3 (NLRP3) inflammasome has become an important bridge between stimulation and sterile inflammation and is activated by intracellular reactive oxygen species (ROS) in response to danger signals, leading to an inflammatory cascade. In this study, we aimed to determine whether pepsin causes LPR-associated inflammatory injury via mediating inflammasome activation and explore the potential mechanism. METHODS: We evaluated NLRP3 inflammasome expression and ROS in the laryngeal mucosa using immunofluorescence and immunohistochemistry. Laryngeal epithelial cells were exposed to pepsin and analyzed using flow cytometry, western blotting, and real-time quantitative PCR to determine ROS, NLRP3, and pro-inflammatorycytokine levels. RESULTS: Pepsin expression was positively correlated with ROS as well as caspase-1 and IL-1ß levels in laryngeal tissues. Intracellular ROS levels were elevated by increased pepsin concentrations, which were attenuated by apocynin (APO)-a ROS inhibitor-in vitro. Furthermore, pepsin significantly induced the mRNA and protein expression of thioredoxin-interacting protein, NLRP3, caspase-1, and IL-1ß in a dose-dependent manner. APO and the NLRP3 inhibitor, MCC950, inhibited NLRP3 inflammasome formation and suppressed laryngeal epithelial cell damage. CONCLUSION: Our findings verified that pepsin could regulate the NLRP3/IL-1ß signaling pathway through ROS activation and further induce inflammatory injury in LPR. Targeting the ROS/NLRP3 inflammasome signaling pathway may help treat patients with LPR disease.


Asunto(s)
Reflujo Laringofaríngeo , Proteína con Dominio Pirina 3 de la Familia NLR , Humanos , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Inflamasomas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Pepsina A/metabolismo , Transducción de Señal , Inflamación/metabolismo , Caspasa 1/metabolismo , Interleucina-1beta/metabolismo
2.
J Hazard Mater ; 466: 133639, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38309169

RESUMEN

The excessive usage of veterinary antibiotics has raised significant concerns regarding their environmental hazard and agricultural impact when entering surface water and soil. Animal waste serves as a primary source of organic fertilizer for intensive large-scale agricultural cultivation, including the widely utilized medicinal and edible plant, Polygonatum cyrtonem. In this study, we employed a novel plant stress tissue culture technology to investigate the toxic effects of tetracycline hydrochloride (TCH) and sulfadiazine (SDZ) on P. cyrtonema. TCH and SDZ exhibited varying degrees of influence on plant growth, photosynthesis, and the reactive oxygen species (ROS) scavenging system. Flavonoid levels increased following exposure to TCH and SDZ. The biosynthesis and signaling pathways of the growth hormones auxin and gibberellic acid were suppressed by both antibiotics, while the salicylic acid-mediated plant stress response was specifically induced in the case of SDZ. Overall, the study unveiled both common and unique responses at physiological, biochemical, and molecular levels in P. cyrtonema following exposure to two distinct types of antibiotics, providing a foundational framework for comprehensively elucidating the precise toxic effects of antibiotics and the versatile adaptive mechanisms in plants.


Asunto(s)
Antibacterianos , Polygonatum , Antibacterianos/toxicidad , Fotosíntesis , Reguladores del Crecimiento de las Plantas , Polygonatum/química , Sulfadiazina , Tetraciclina , Transcriptoma
3.
Plant Physiol Biochem ; 207: 108367, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38237422

RESUMEN

Quercus glauca is a valuable natural resource with both economic and ecological values. It is one of the dominant forest tree species widely distributed in Southern China. As a perennial broadleaf plant, Q. glauca inevitably encounters numerous stresses from environment. Glutaredoxins (GRXs) are a kind of small oxidoreductases that play an important role in response to oxidative stress. CC-type GRXs also known as ROXYs are specific to land plants. In this study, we isolated a CC-type GRX gene, QgROXY1, from Q. glauca. Expression of QgROXY1 is induced by a variety of environmental stimuli. QgROXY1 protein localizes to both cytoplasm and nucleus; whereas the nucleus localized QgROXY1 could physically interact with the basic region/leucine zipper motif (bZIP) transcription factor AtTGA2 from Arabidopsis thaliana. Transgenic A. thaliana ectopically expressing QgROXY1 is hypersensitive to exogenously applied salicylic acid. Induction of plant defense gene is significantly impaired in QgROXY1 transgenic plants that results in enhanced susceptibility to infection of Botrytis cinerea pathogen, indicating the evolutionary conserved function among ROXY homologs in weedy and woody plants. This is the first described function for the ROXYs in tree plants. Through this case study, we demonstrated the feasibility and efficacy of molecular technology applied to characterization of gene function in tree species.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Quercus , Proteínas de Arabidopsis/genética , Quercus/genética , Quercus/metabolismo , Glutarredoxinas/genética , Glutarredoxinas/metabolismo , Arabidopsis/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Regulación de la Expresión Génica de las Plantas
4.
Interdiscip Sci ; 16(1): 39-57, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37486420

RESUMEN

Breast cancer is commonly diagnosed with mammography. Using image segmentation algorithms to separate lesion areas in mammography can facilitate diagnosis by doctors and reduce their workload, which has important clinical significance. Because large, accurately labeled medical image datasets are difficult to obtain, traditional clustering algorithms are widely used in medical image segmentation as an unsupervised model. Traditional unsupervised clustering algorithms have limited learning knowledge. Moreover, some semi-supervised fuzzy clustering algorithms cannot fully mine the information of labeled samples, which results in insufficient supervision. When faced with complex mammography images, the above algorithms cannot accurately segment lesion areas. To address this, a semi-supervised fuzzy clustering based on knowledge weighting and cluster center learning (WSFCM_V) is presented. According to prior knowledge, three learning modes are proposed: a knowledge weighting method for cluster centers, Euclidean distance weights for unlabeled samples, and learning from the cluster centers of labeled sample sets. These strategies improve the clustering performance. On real breast molybdenum target images, the WSFCM_V algorithm is compared with currently popular semi-supervised and unsupervised clustering algorithms. WSFCM_V has the best evaluation index values. Experimental results demonstrate that compared with the existing clustering algorithms, WSFCM_V has a higher segmentation accuracy than other clustering algorithms, both for larger lesion regions like tumor areas and for smaller lesion areas like calcification point areas.


Asunto(s)
Lógica Difusa , Molibdeno , Humanos , Mamografía , Algoritmos , Análisis por Conglomerados , Procesamiento de Imagen Asistido por Computador/métodos
5.
J Hazard Mater ; 465: 133060, 2024 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-38016314

RESUMEN

Exposure to organic ultraviolet (UV) filters has raised concerns due to their potential adverse effects on environments. However, their toxic mechanisms on plants remain elusive. In this study, using integrative physiological and transcriptomic approaches we investigated the physiological and molecular responses to three representative UV filters, namely oxybenzone (OBZ), avobenzone (AVB), and octinoxate (OMC), in an agricultural model plant tobacco. The exposure to UV filters disrupts the functionality of photosystem reaction centers and the light-harvesting apparatus. Concurrently, UV filters exert a suppressive effect on the expression of genes encoding Rubisco and Calvin-Benson cycle enzymes, resulting in a decreased efficiency of the Calvin-Benson cycle and consequently hampering the process of photosynthesis. Exposure to UV filters leads to significant generation of reactive oxygen species within tobacco leaves and downregulation of oxidoreductase activities. Moreover, UV filters promote abscisic acid (ABA) accumulation by inducing the expression of ABA biosynthesis genes whereas repress indole-3-acetic acid (IAA) biosynthesis gene expression, which induce leaf yellowing and slow plant growth. In summary, the organic UV filters exert toxic effects on tobacco growth by inhibiting chlorophyll synthesis, photosynthesis, and the Calvin-Benson cycle, while generating excessive reactive oxygen species. This study sheds light on the toxic and tolerance mechanisms of UV filters in agricultural crops.


Asunto(s)
Nicotiana , Rayos Ultravioleta , Especies Reactivas de Oxígeno/metabolismo , Fotosíntesis , Ácido Abscísico
6.
Int J Mol Sci ; 24(23)2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-38069215

RESUMEN

Protoplasts, derived from plant cells, exhibit remarkable totipotency and hold significant value across a wide spectrum of biological and biotechnological applications. These versatile applications encompass protein subcellular localization and interaction analysis, gene expression regulation, functional characterization, gene editing techniques, and single-cell sequencing. Protoplasts' usability stems from their inherent accessibility and their ability to efficiently incorporate exogenous genes. In this review, we provide a comprehensive overview, including details on isolation procedures and influencing factors, purification and viability assessment methodologies, and the utilization of the protoplast transient expression system. The aim is to provide a comprehensive overview of current applications and offer valuable insights into protoplast isolation and the establishment of transient expression systems in a diverse range of plant species, thereby serving as a valuable resource for the plant science community.


Asunto(s)
Plantas , Protoplastos , Protoplastos/metabolismo , Plantas/genética , Biotecnología , Edición Génica
7.
Food Res Int ; 173(Pt 1): 113325, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37803636

RESUMEN

The impact of curcumin-mediated photodynamic treatment (PDT) on the microbiological, physicochemical and sensory qualities of salmon sashimi has not been explored. Herein, this study aimed to evaluate the effects of PDT on the shelf-life quality of ready-to-eat salmon fillets during chilled storage (4 °C) in comparison with five widely investigated natural extracts, including cinnamic aldehyde, rosmarinic acid, chlorogenic acid, dihydromyricetin and nisin. From a microbial perspective, PDT exhibited outstanding bacterial inhibition, the results of total viable counts, total coliform bacteria, psychrotrophic bacteria, Pseudomonas spp., Enterobacteriaceae family, and H2S-producing bacteria were notably inactivated (p < 0.05) to meet the acceptable limits by PDT in comparison with those of the control group and natural origin groups, which could extend the shelf-life of salmon fillets from<6 days to 10 days. In the alteration of physicochemical indicators, PDT and natural extracts were able to maintain the pH value and retard lipid oxidation in salmon fillets, while apparently slowing the accumulation (p < 0.05) of total volatile basic nitrogen and biogenic amines, especially the allergen histamine, which contrary to with the variation trend of spoilage microbiota. In parallel, PDT worked effectively (p < 0.05) on the breakdown of adenosine triphosphate and adenosine diphosphate to maintain salmon fillet freshness. Additionally, the physical indicators of texture profile and color did not have obvious changes (p < 0.05) after treated by PDT during the shelf life. Besides, the sensory scores of salmon samples were also significantly improved. In general, PDT not only has a positive effect on organoleptic indicators but is also a potential antimicrobial strategy for improving the quality of salmon sashimi.


Asunto(s)
Curcumina , Salmo salar , Animales , Conservación de Alimentos/métodos , Almacenamiento de Alimentos , Curcumina/farmacología , Curcumina/metabolismo , Alimentos Marinos/análisis , Bacterias/metabolismo
8.
Materials (Basel) ; 16(14)2023 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-37512186

RESUMEN

The segregation of the Fe element in Ti-10V-2Fe-3Al titanium alloy (Ti-1023) can lead to the generation of beta flecks, which seriously affects the performance of Ti-1023 products. During the heat treatment (HT) process at a high temperature, the Fe element in Ti-1023 ingots will migrate, making its distribution more uniform and reducing the segregation index. In this paper, the control of Fe micro-segregation in Ti-1023 ingots by homogenization HT was investigated. Firstly, dissection sampling and SEM-EDS analysis methods were used to study the distribution pattern of the Fe element in the equiaxed grains in the core of Ti-1023 ingots. It was found that the Fe content in the grain gradually increased along with the radial direction from the core to the grain boundary. Then, the homogenization HT experiments and numerical simulations of Ti-1023 at different HT temperatures from 1050 °C to 1200 °C were carried out. The results showed that the uniformity of Fe element distribution within grain can be significantly improved by the homogenization HT. With increasing HT temperature, Fe atoms migration ability increases, and the uniformity of Fe element distribution improves. Homogenization HT at 1150 °C and 1200 °C for 12 h can effectively reduce the degree of Fe element segregation.

9.
Plant Physiol Biochem ; 201: 107885, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37437343

RESUMEN

Protoplasts preparation and purification have been frequently used in plant genetics and breeding studies, whereas application of protoplasts in woody plants is still in its infancy. Although transient gene expression using purified protoplasts is well-documented and widely used in model plants and agriculture crops, no instance of either stable transformation or transient gene expression in the woody plant Camellia Oleifera has as of yet been reported. Here, we developed a protoplast preparation and purification method using C. oleifera petals by optimizing osmotic condition with D-mannitol and polysaccharide-degrading enzyme concentrations for petal cell wall digestion, to reach a high efficiency of protoplast productivity and viability. The achieved protoplasts yield was approximately 1.42 × 107 cells per gram of petal material and the viability of protoplasts was up to 89%. In addition, we explored influencing factors of protoplast transformation, including concentrations of PEG4000 and plasmid DNA. The transformation efficiency of 81% could be reached under the optimized condition. This protoplast isolation and transient expression system were deployed to further identify the functional regulation of C. oleifera related genes and the subcellular distribution of their encoded products. In summary, the protoplast isolation and transient expression system we established using oil-tea tree petals is an efficient, versatile and time-saving system, being suitable for gene function characterization and molecular mechanism analysis.


Asunto(s)
Camellia , Protoplastos , Protoplastos/metabolismo , Camellia/genética , Fitomejoramiento , Expresión Génica
10.
Front Plant Sci ; 14: 1183402, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37324665

RESUMEN

Callose is an important linear form of polysaccharide synthesized in plant cell walls. It is mainly composed of ß-1,3-linked glucose residues with rare amount of ß-1,6-linked branches. Callose can be detected in almost all plant tissues and are widely involved in various stages of plant growth and development. Callose is accumulated on plant cell plates, microspores, sieve plates, and plasmodesmata in cell walls and is inducible upon heavy metal treatment, pathogen invasion, and mechanical wounding. Callose in plant cells is synthesized by callose synthases located on the cell membrane. The chemical composition of callose and the components of callose synthases were once controversial until the application of molecular biology and genetics in the model plant Arabidopsis thaliana that led to the cloning of genes encoding synthases responsible for callose biosynthesis. This minireview summarizes the research progress of plant callose and its synthetizing enzymes in recent years to illustrate the important and versatile role of callose in plant life activities.

11.
Altern Ther Health Med ; 29(1): 90-96, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35839111

RESUMEN

Background: Studies show that Tai Chi, a traditional Chinese mind-body exercise, has the potential to improve cognitive and physical function among the elderly. However, debates continue about its effectiveness among persons with dementia (PWD). Primary study objective: This study assessed the effectiveness of Tai Chi in improving cognitive, physical, and emotional function among PWDs. Methods: We conducted a systematic review of research on online databases (MEDLINE, EMBASE, Pubmed, and Cochrane Library) published up to April 2021. Relevant randomized clinical trials (RCTs) were reviewed and analyzed. A random-effect model was used to evaluate the pooled mean difference values. Intervention: The individuals in the intervention group practiced Tai Chi exercises in addition to their regular care, while the individuals in the control group continued their usual care. Primary Outcome Measures: We focus on three outcome measures: the Mini-mental State Examination (MMSE), Timed Up and Go (TUG), and Geriatric Depression Scale (GDS) scores. Results: Seven studies (N = 616) were included in the meta-analysis. Our results show that Tai Chi can improve cognitive function in PWDs (P = .007, SMD = 0.27; 95% CI, 0.08 to 0.47). However, Tai Chi might not improve the TUG (P = .25, SMD = -0.64; 95% CI, -1.74 to 0.46) and GDS (P = .61; SMD = -0.36; 95% CI -2.00 to 1.17) functions. Conclusions: The results suggest that Tai Chi can help improve cognitive function among PWDs, but it has no physical and emotional benefits as assessed using the TUG and GDS scales, respectively.


Asunto(s)
Demencia , Taichi Chuan , Humanos , Anciano , Calidad de Vida/psicología , Taichi Chuan/métodos , Ejercicio Físico , Cognición , Demencia/terapia
12.
J Asian Nat Prod Res ; 25(2): 147-155, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35582859

RESUMEN

Amestolkins A (1) and B (2), two previously undescribed phthalides sharing the same planar structure of (1, 5-dihydroxyhexyl)-7-hydroxyisobenzofuran-1(3H)-one were isolated from Talaromyces amestolkiae. Their absolute configurations were elucidated by comprehensive analyses of spectroscopic evidences in high-resolution electrospray mass spectra (HRESIMS) and nuclear magnetic resonance (NMR) combined with electronic circular dichroism (ECD) and NMR calculations. 1 and 2 showed anti-neuroinflammatory activity by inhibiting the gene expressions of proinflammatory factors including C-C motif chemokine ligand 2 (CCL-2), tumor necrosis factor-α (TNF-α) and interleukin 6 (IL-6), as well as attenuating the excretion of inducible nitric oxide synthase (iNOS) in BV-2 microglial cells at the concentration of 30 µM.


Asunto(s)
Talaromyces , Estructura Molecular , Espectroscopía de Resonancia Magnética , Talaromyces/química
13.
J Cell Physiol ; 2022 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-36538653

RESUMEN

The gaseous ethylene (ET) and the oxylipin-derived jasmonic acid (JA) in plants jointly regulate an arsenal of pathogen responsive genes involved in defending against necrotrophic pathogens. The APETALA2 (AP2)/ETHYLENE RESPONSE FACTOR (ERF) transcription factor ORA59 is a major positive regulator of the ET/JA-mediated defense pathway in Arabidopsis thaliana. The Arabidopsis agmatine coumaroyltransferase (AtACT) catalyzes the formation of hydroxycinnamic acid amides (HCAAs) which are effective toxic antimicrobial substances known as phytoalexins and play an important role in plant defense response. However, induction and regulation of AtACT gene expression and HCAAs synthesis in plants remain less understood. Through gene coexpression network analysis, we identified a list of GCC-box cis-element containing genes that were coexpressed with ORA59 under diverse biotic stress conditions and might be potential downstream targets of this AP2/ERF-domain transcription factor. Particularly, ORA59 directly binds to AtACT gene promoter via the GCC-boxes and activates AtACT gene expression. The ET precursor 1-aminocyclopropane-1-carboxylic acid (ACC)-treatment significantly induces AtACT gene expression. Both ORA59 and members of the class II TGA transcription factors are indispensable for ACC-induced AtACT expression. Interestingly, the expression of AtACT is also subject to the signaling crosstalk of the salicylic acid- and ET/JA-mediated defense response pathways. In addition, we found that genes of the phenylpropanoid metabolism pathway were specifically induced by Botrytis cinerea. Taking together, these evidence suggest that the ET/JA signaling pathway activate the expression of AtACT to increase antimicrobial HCAAs production through the transcription factor ORA59 in response to the infection of necrotrophic plant pathogens.

14.
J Nat Prod ; 85(6): 1474-1485, 2022 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-35696541

RESUMEN

Transcriptome analysis is shown to be an effective strategy to understand the potential function of natural products. Here, it is reported that 11 previously undescribed hydroanthraquinones [nigroquinones A-K (1-11)], along with eight known congeners, were isolated from Nigrospora sphaerica. Their structures were elucidated by interpreting spectroscopic and spectrometric data including high-resolution mass spectra and nuclear magnetic resonance. The absolute configurations of 1-11 were confirmed by electronic circular dichroism calculations. Transcriptome analysis revealed that 3 (isolated in the largest amount) might be anti-inflammatory. Assays based on LPS-induced RAW264.7 macrophages and zebrafish embryos confirmed that some of the isolated hydroanthraquinones attenuated the secretion of pro-inflammatory mediators in vitro and in vivo. Further Western blotting and immunofluorescence experiments indicated that 4 (which showed the most obvious nitric oxide inhibition) could suppress the expression of nuclear factor-kappa-B (NF-κB), phosphorylation of the inhibitor of NF-κB kinase and inhibit the transportation of NF-κB to the nucleus. Hence, the suppression of the NF-κB signaling pathway may be responsible for the anti-inflammatory effect. These results show that bioactivity evaluation on the basis of transcriptome analysis may be effective in the functional exploration of natural products.


Asunto(s)
Productos Biológicos , FN-kappa B , Animales , Antiinflamatorios/farmacología , Ascomicetos , Perfilación de la Expresión Génica , Lipopolisacáridos/farmacología , Ratones , Óxido Nítrico , Óxido Nítrico Sintasa de Tipo II/metabolismo , Células RAW 264.7 , Pez Cebra
15.
Front Pharmacol ; 13: 842730, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35462925

RESUMEN

Ulcerative Colitis (UC) is a major form of chronic inflammatory bowel disease of the colonic mucosa and exhibits progressive morbidity. There is still a substantial need of small molecules with greater efficacy and safety for UC treatment. Here, we report a N-acetyldopamine dimer (NADD) elucidated (2R,3S)-2-(3',4'-dihydroxyphenyl)-3-acetylamino-7-(N-acetyl-2″-aminoethyl)-1,4-benzodioxane, which is derived from traditional Chinese medicine Isaria cicadae, exhibits significant therapeutic efficacy against dextran sulfate sodium (DSS)-induced UC. Functionally, NADD treatment effectively relieves UC symptoms, including weight loss, colon length shortening, colonic tissue damage and expression of pro-inflammatory factors in pre-clinical models. Mechanistically, NADD treatment significantly inhibits the expression of genes in inflammation related NF-κB and MAPK signaling pathways by transcriptome analysis and western blot, which indicates that NADD inhibits the inflammation in UC might through these two pathways. Overall, this study identifies an effective small molecule for UC therapy.

16.
Bioorg Chem ; 124: 105810, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35447407

RESUMEN

Three previously undescribed polyketides [proliferatin A-C (1-3)] with anti-inflammatory activity were isolated from Fusarium proliferatum. 1-3 attenuated the production of inflammatory signal messengers including nitric oxide (NO), reactive oxygen species, proinflammatory cytokines interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), and interleukin-1ß (IL-1ß), as well as the related proteins nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in lipopolysaccharide (LPS)-induced RAW264.7 macrophages. Transcriptome analyses based on RNA-seq indicated the potential anti-inflammatory mechanism of 1-3 involved in the nuclear factor kappa-B (NF-κB) and mitogen activated protein kinases (MAPKs) signaling pathways. Experimental evaluation of the protein levels revealed that 1-3 can inhibit the phosphorylation of IκB kinase (IKK), the degradation of NF-κB Inhibitor-α (IκBα), the phosphorylation of nuclear factor-κB (NF-κB) and can reduce NF-κB transportation to the nucleus. Interestingly, 1-3 decreased the phosphorylation of MAPKs including p-p38, p-ERK, and p-JNK. Molecular docking models suggest that binding of 1-3 to TLR4-MD-2 complex may lead to inhibition of NF-κB and MAPK signaling pathways, which was confirmed in vitro by surface plasmon resonance (SPR) assays. 1-3 can thus constitute potential therapeutic candidates for the treatment of inflammation-associated diseases.


Asunto(s)
Lipopolisacáridos , FN-kappa B , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Ciclooxigenasa 2/metabolismo , Humanos , Inflamación/inducido químicamente , Inflamación/tratamiento farmacológico , Lipopolisacáridos/metabolismo , Lipopolisacáridos/farmacología , Sistema de Señalización de MAP Quinasas , Simulación del Acoplamiento Molecular , FN-kappa B/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo II/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
17.
Front Plant Sci ; 13: 1101912, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36704168

RESUMEN

Regulation of gene expression underpins gene function and is essential for regulation of physiological roles. Epigenetic modifications regulate gene transcription by physically facilitating relaxation or condensation of target loci in chromatin. Transcriptional corepressors are involved in chromatin remodeling and regulate gene expression by establishing repressive complexes. Genetic and biochemical studies reveal that a member of the Groucho/Thymidine uptake 1 (Gro/Tup1) corepressor family, HIGH EXPRESSION OF OSMOTICALLY RESPONSIVE GENE 15 (HOS15), is recruited via the evening complex (EC) to the GIGANTEA (GI) promoter to repress gene expression, and modulating flowering time. Therefore, HOS15 connects photoperiodic pathway and epigenetic mechanism to control flowering time in plants. In addition, growing body of evidence support a diverse roles of the epigenetic regulator HOS15 in fine-tuning plant development and growth by integrating intrinsic genetic components and various environmental signals.

18.
J Nat Prod ; 84(12): 3044-3054, 2021 12 24.
Artículo en Inglés | MEDLINE | ID: mdl-34846889

RESUMEN

Overexpression of various pro-inflammatory factors in microglial cells tends to induce neurodegenerative diseases, for which there is no effective therapy available. Aureonitol (1) and seven analogues, including six previously undescribed [elatumenol A-F (2-4, 6-8, respectively)], along with two new orsellinic acid esters [elatumone A and B (9 and 10)], were isolated from Chaetomium elatum. The structures of the compounds were established through comprehensive analysis of spectroscopic data, including high-resolution mass spectra and one- and two-dimensional NMR, and absolute configurations determined by the Mosher method, dimolybdenum tetraacetate-induced circular dichroism, and theoretical calculations including electronic circular dichroism and NMR. Metabolites 3, 4, 7, and 8 exhibited antineuroinflammatory activity by attenuating the production of inflammatory mediators, such as nitric oxide, interleukin-6, interleukin-1ß, tumor necrosis factor-α, and reactive oxygen species. Western blot results indicated 8 decreases the level of inducible nitric oxide synthase and cyclooxygenase-2 and suppresses the expression of Toll-like receptor 4 and nuclear factor kappa-B (NF-κB) as well as the phosphorylation of the inhibitor of NF-κB and p38 mitogen-activated protein kinases in lipopolysaccharide-activated BV-2 microglial cells.


Asunto(s)
Antiinflamatorios/farmacología , Chaetomium/química , Furanos/farmacología , Microglía/efectos de los fármacos , Resorcinoles/farmacología , Animales , Ésteres/química , Furanos/química , Lipopolisacáridos/farmacología , Ratones , Óxido Nítrico/antagonistas & inhibidores , Resorcinoles/química , Análisis Espectral/métodos
19.
Chin J Traumatol ; 24(4): 221-230, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34099359

RESUMEN

PURPOSE: Posttraumatic stress disorder (PTSD) is a significant global mental health concern, especially in the military. This study aims to estimate the efficacy of mindfulness meditation in the treatment of military-related PTSD, by synthesizing evidences from randomized controlled trials. METHODS: Five electronic databases (Pubmed, EBSCO Medline, Embase, PsychINFO and Cochrane Library) were searched for randomized controlled trials focusing on the treatment effect of mindfulness meditation on military-related PTSD. The selection of eligible studies was based on identical inclusion and exclusion criteria. Information about study characteristics, participant characteristics, intervention details, PTSD outcomes, as well as potential adverse effects was extracted from the included studies. Risk of bias of all the included studies was critically assessed using the Cochrane Collaboration's tool. R Statistical software was performed for data analysis. RESULTS: A total of 1902 records were initially identified and screened. After duplicates removal and title & abstract review, finally, 19 articles in English language with 1326 participants were included through strict inclusion and exclusion criteria. The results revealed that mindfulness meditation had a significantly larger effect on alleviating military-related PTSD symptoms compared with control conditions, such as treatment as usual, present-centered group therapy and PTSD health education (standardized mean difference (SMD) = -0.33; 95% CI [-0.45, -0.21]; p < 0.0001). Mindfulness interventions with different control conditions (active or non-active control, SMD = -0.33, 95% CI [-0.46, -0.19]; SMD = -0.49, 95% CI [-0.88, -0.10], respectively), formats of delivery (group-based or individual-based, SMD = -0.30, 95% CI [-0.42, -0.17], SMD = -0.49, 95% CI [-0.90, -0.08], respectively) and intervention durations (short-term or standard duration, SMD = -0.27, 95% CI [-0.46, -0.08], SMD = -0.40, 95% CI [-0.58, -0.21], respectively) were equally effective in improving military-related PTSD symptoms. CONCLUSION: Findings from this meta-analysis consolidate the efficacy and feasibility of mindfulness meditation in the treatment of military-related PTSD. Further evidence with higher quality and more rigorous design is needed in the future.


Asunto(s)
Terapia Cognitivo-Conductual , Meditación , Personal Militar , Atención Plena , Trastornos por Estrés Postraumático , Humanos , Ensayos Clínicos Controlados Aleatorios como Asunto , Trastornos por Estrés Postraumático/terapia
20.
Bioact Mater ; 6(11): 3766-3781, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33898877

RESUMEN

The mechanism underlying neurogenesis during embryonic spinal cord development involves a specific ligand/receptor interaction, which may be help guide neuroengineering to boost stem cell-based neural regeneration for the structural and functional repair of spinal cord injury. Herein, we hypothesized that supplying spinal cord defects with an exogenous neural network in the NT-3/fibroin-coated gelatin sponge (NF-GS) scaffold might improve tissue repair efficacy. To test this, we engineered tropomyosin receptor kinase C (TrkC)-modified neural stem cell (NSC)-derived neural network tissue with robust viability within an NF-GS scaffold. When NSCs were genetically modified to overexpress TrkC, the NT-3 receptor, a functional neuronal population dominated the neural network tissue. The pro-regenerative niche allowed the long-term survival and phenotypic maintenance of the donor neural network tissue for up to 8 weeks in the injured spinal cord. Additionally, host nerve fibers regenerated into the graft, making synaptic connections with the donor neurons. Accordingly, motor function recovery was significantly improved in rats with spinal cord injury (SCI) that received TrkC-modified NSC-derived neural network tissue transplantation. Together, the results suggested that transplantation of the neural network tissue formed in the 3D bioactive scaffold may represent a valuable approach to study and develop therapies for SCI.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...